Some remarks on diophantine equations and diophantine approximation
نویسندگان
چکیده
We give many equivalent statements of Mahler’s generalization of the fundamental theorem of Thue. In particular, we show that the theorem of Thue–Mahler for degree 3 implies the theorem of Thue for arbitrary degree ≥ 3, and we relate it with a theorem of Siegel on the rational integral points on the projective line P(K) minus 3 points. Classification MSC 2010: 11D59; 11J87; 11D25
منابع مشابه
A Generalized Fibonacci Sequence and the Diophantine Equations $x^2pm kxy-y^2pm x=0$
In this paper some properties of a generalization of Fibonacci sequence are investigated. Then we solve the Diophantine equations $x^2pmkxy-y^2pm x=0$, where $k$ is positive integer, and describe the structure of solutions.
متن کاملSelf-similar fractals and arithmetic dynamics
The concept of self-similarity on subsets of algebraic varieties is defined by considering algebraic endomorphisms of the variety as `similarity' maps. Self-similar fractals are subsets of algebraic varieties which can be written as a finite and disjoint union of `similar' copies. Fractals provide a framework in which, one can unite some results and conjectures in Diophantine g...
متن کاملOpen Diophantine Problems
Diophantine Analysis is a very active domain of mathematical research where one finds more conjectures than results. We collect here a number of open questions concerning Diophantine equations (including Pillai’s Conjectures), Diophantine approximation (featuring the abc Conjecture) and transcendental number theory (with, for instance, Schanuel’s Conjecture). Some questions related to Mahler’s ...
متن کاملDiophantine Equations Related with Linear Binary Recurrences
In this paper we find all solutions of four kinds of the Diophantine equations begin{equation*} ~x^{2}pm V_{t}xy-y^{2}pm x=0text{ and}~x^{2}pm V_{t}xy-y^{2}pm y=0, end{equation*}% for an odd number $t$, and, begin{equation*} ~x^{2}pm V_{t}xy+y^{2}-x=0text{ and}text{ }x^{2}pm V_{t}xy+y^{2}-y=0, end{equation*}% for an even number $t$, where $V_{n}$ is a generalized Lucas number. This pape...
متن کاملon ”NUMBER THEORY AND MATHEMATICAL PHYSICS” On recent Diophantine results
Diophantus of Alexandria was a greek mathematician, around 200 AD, who studied mathematical problems, mostly geometrical ones, which he reduced to equations in rational integers or rational numbers. He was interested in producing at least one solution. Such equations are now called Diophantine equations. An example is y − x = 1, a solution of which is (x = 2, y = 3). More generally, a Diophanti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011